Robust expansion of networks against cascading failures with reinforcement learning

Author:

Wu Yu1ORCID,Pu Cunlai1ORCID,Xia Yongxiang2ORCID

Affiliation:

1. School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China

2. School of Communication Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China

Abstract

The network infrastructures, such as the power grids and Internet, are expanding in size due to the increasing needs of our society. This brings about the problem of expanding networks with a guarantee of robustness against network disturbances that may cause catastrophic consequences. In this paper, we study the optimal network expansion in terms of network robustness against cascading failures. Specifically, we consider the network expansion as a Markovian decision process and further propose a reinforcement learning based network expansion method. Simulation results in model networks and real-world networks demonstrate that our expansion method can greatly improve network robustness. Our work provides some insights for the optimal expansion of network infrastructures.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3