Kinetic model of wealth distribution by trading stocks with geometric brownian motion

Author:

Yano Ryosuke1,Kuroda Hisayasu2

Affiliation:

1. Tokio Marine dR Co., Ltd., Otemachi 1-5-1, Chiyoda-ku, Tokyo 100-0004, Japan

2. Department of Information Technology, University of Ehime, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan

Abstract

In this paper, we consider the wealth distribution obtained by trading (buying–selling) stocks whose prices follow the geometric Brownian motion (GBM), when both number of the ticker symbol of the stock and maximum number of the traded stock are limited to unity. The binary exchange of the cash and stock between two agents is expressed with the Boltzmann-type kinetic equation. The distribution function of the number of the agents with the specific number of the stock or specific amount of the cash can be demonstrated, theoretically, when the price of the stock is constant. The distribution function of the number of the agents with the specific amount of the total asset can be approximated by [Formula: see text]-distribution, when the price of the stock follows the GBM. Finally, the rule in the binary-exchange-game approximates the distribution function of the number of the agents with the specific amount of the total asset to the Feller–Pareto-like distribution at the high wealth tail.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3