Affiliation:
1. Faculty of Liberal Arts, The Open University of Japan, 2-11 Wakaba, Mihama-Ku, Chiba 261-8586, Japan
Abstract
In order to unravel the physical and mathematical mystery of synchronized-flow mechanism and to reveal the fundamental mechanism and origin of synchronized flow produced by nonlinear stochastic processes, we have produced simple stochastic traffic flow models (the gradual-NaSch, Phoenix and mPhoenix models) with nonlinear safe speeds. In the mNaSch model and our gradual-NaSch model, the [Formula: see text]th vehicle’s speed is the same as or different from the [Formula: see text]th vehicle’s speed because they are discrete values. In the mNaSch and gradual-NaSch models, the same discrete values of the [Formula: see text]th and [Formula: see text]th states make it easy to identify synchronized flow with speed-synchronized phase of the [Formula: see text]th and [Formula: see text]th states. On the other hand, when we deal with synchronized flow in continuous traffic flow models, we face a problem. Continuous values cause the difficulty in identification of synchronization. In order to definitely clarify whether or not synchronized flow occurs in continuous models, we have established a novel idea of Exchange approach to recognizing synchronized flow as speed-synchronized phase. Our idea is generated from the analogical image that the whole system of synchronized metronomes does not change even if the [Formula: see text]th and [Formula: see text]th synchronized metronomes are exchanged. The Exchange approach (exchanging the [Formula: see text]th vehicle’s state for any [Formula: see text]th vehicle’s state in the whole system of traffic flow), which causes distortion such as a collision if non-synchronized vehicle’s states are exchanged and makes it possible to definitely clarify whether or not synchronized flow occurs in continuous models, is applied to our simple stochastic continuous model (the mPhoenix model). On the basis of the Exchange approach, we can recognize that the mPhoenix model surely reproduces synchronized flow. In addition, we have proposed mathematical approach to deriving nonlinear safe speeds which guarantee collision free driving and reproduce synchronized flow.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics