CLASSIFICATION AND IDENTIFICATION OF FUNGAL SEQUENCES USING CHARACTERISTIC RESTRICTION ENDONUCLEASE CUT ORDER

Author:

SENGUPTA RAJIB1,BASTOLA DHUNDY R.1,ALI HESHAM H.1

Affiliation:

1. College of Information Science and Technology, University of Nebraska, Omaha, NE 68182, USA

Abstract

Restriction Fragment Length Polymorphism (RFLP) is a powerful molecular tool that is extensively used in the molecular fingerprinting and epidemiological studies of microorganisms. In a wet-lab setting, the DNA is cut with one or more restriction enzymes and subjected to gel electrophoresis to obtain signature fragment patterns, which is utilized in the classification and identification of organisms. This wet-lab approach may not be practical when the experimental data set includes a large number of genetic sequences and a wide pool of restriction enzymes to choose from. In this study, we introduce a novel concept of Enzyme Cut Order — a biological property-based characteristic of DNA sequences which can be defined and analyzed computationally without any alignment algorithm. In this alignment-free approach, a similarity matrix is developed based on the pairwise Longest Common Subsequences (LCS) of the Enzyme Cut Orders. The choice of an ideal set of restriction enzymes used for analysis is augmented by using genetic algorithms. The results obtained from this approach using internal transcribed spacer regions of rDNA from fungi as the target sequence show that the phylogenetically-related organisms form a single cluster and successful grouping of phylogenetically close or distant organisms is dependent on the choice of restriction enzymes used in the analysis. Additionally, comparison of trees obtained with this alignment-free and the legacy method revealed highly similar tree topologies. This novel alignment-free method, which utilizes the Enzyme Cut Order and restriction enzyme profile, is a reliable alternative to local or global alignment-based classification and identification of organisms.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FOREWORD: ADVANCES IN COMPUTATIONAL SYSTEMS BIOINFORMATICS;Journal of Bioinformatics and Computational Biology;2010-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3