Automated pill quality inspection using deep learning

Author:

Mac Thi Thoa1,Hung Nguyen Thanh1

Affiliation:

1. School of Mechanical Engineering, Hanoi University of Science and Technology, No. 1 Dai Co Viet Street, Hanoi 100000, Vietnam

Abstract

The pill manufacturing process accrues substantial financial costs due to quality. Pill quality inspection is laborious, time-consuming and subjective, resulting in poor statistical representation and inconsistent results. In this study, we developed an approach that integrates deep learning algorithms and computer-vision-based processing with an optimization algorithm to fully automate the image analysis of internal crack/contamination detection. This approach exploits the features learned by convolutional neural network using various sub-processing techniques and Adam optimization. It achieves robust quantification of internal pill defects with an average accuracy of 95%.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Real-Time Deep Learning-Based Automatic Pill Classification;Lecture Notes in Mechanical Engineering;2024

2. Quality Control for Smart Manufacturing in Industry 5.0;Springer Series in Reliability Engineering;2023

3. Detection of Fiber Flaw on Pill Surface Based on Improved Deep Convolution Neural Network;2022 41st Chinese Control Conference (CCC);2022-07-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3