ANALYTICAL MECHANICS IN STOCHASTIC DYNAMICS: MOST PROBABLE PATH, LARGE-DEVIATION RATE FUNCTION AND HAMILTON–JACOBI EQUATION

Author:

GE HAO1,QIAN HONG2

Affiliation:

1. Beijing International Center for Mathematical Research (BICMR) and Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, P. R. China

2. Department of Applied Mathematics, University of Washington, Seattle, WA 98195, USA

Abstract

Analytical (rational) mechanics is the mathematical structure of Newtonian deterministic dynamics developed by D'Alembert, Lagrange, Hamilton, Jacobi, and many other luminaries of applied mathematics. Diffusion as a stochastic process of an overdamped individual particle immersed in a fluid, initiated by Einstein, Smoluchowski, Langevin and Wiener, has no momentum since its path is nowhere differentiable. In this exposition, we illustrate how analytical mechanics arises in stochastic dynamics from a randomly perturbed ordinary differential equation dXt = b(Xt)dt+ϵdWt, where Wt is a Brownian motion. In the limit of vanishingly small ϵ, the solution to the stochastic differential equation other than [Formula: see text] are all rare events. However, conditioned on an occurrence of such an event, the most probable trajectory of the stochastic motion is the solution to Lagrangian mechanics with [Formula: see text] and Hamiltonian equations with H(p, q) = ‖p‖2+b(q)⋅p. Hamiltonian conservation law implies that the most probable trajectory for a "rare" event has a uniform "excess kinetic energy" along its path. Rare events can also be characterized by the principle of large deviations which expresses the probability density function for Xt as f(x, t) = e-u(x, t)/ϵ, where u(x, t) is called a large-deviation rate function which satisfies the corresponding Hamilton–Jacobi equation. An irreversible diffusion process with ∇×b≠0 corresponds to a Newtonian system with a Lorentz force [Formula: see text]. The connection between stochastic motion and analytical mechanics can be explored in terms of various techniques of applied mathematics, for example, singular perturbations, viscosity solutions and integrable systems.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3