Development of nonlinear optical materials promoted by density functional theory simulations

Author:

Jiang Xingxing12,Kang Lei12,Luo Siyang1,Gong Pifu12,Lee Ming-Hsien3,Lin Zheshuai1

Affiliation:

1. Beijing Center for Crystal R&D, Key Laboratory of Functional Crystals and Laser Technology of the Chinese Academy of Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China

2. University of the Chinese Academy of Sciences, Beijing 100049, P. R. China

3. Department of Physics, Tamkang University, Tamsui, New Taipei 25137, Taiwan

Abstract

Nonlinear optical (NLO) crystals are very important optoelectronic functional materials and their developments have significantly contributed to the progress of laser science and technology for decades. In order to explore new NLO crystals with superior performances, it is greatly desirable to understand the intrinsic relationship between the macroscopic optical properties and microscopic structural features in crystals. In this paper, the applications of density functional theory (DFT) method to the elucidation of the structure-property relationship and to the exploration on novel NLO materials in the ultraviolet and infrared spectrum regions are reviewed. The great success in the linear and NLO property predictions has been achieved using the first-principles computational simulations, and the mechanism understanding obtained by various analysis tools can give substantial guidance to the search and design of new NLO crystals.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3