Affiliation:
1. UNIFEI – Av. BPS, 1303 – Itajubá – MG – CEP 37.500-903, Brazil
2. Instituto de Química – USP – Av. Prof. Lineu Prestes, 748 - São Paulo – SP, Brazil
3. Instituto de Física Gleb Wataghin – UNICAMP – Campinas – SP – CEP 13.084-971, Brazil
4. Instituto de Química – UNICAMP – CP 6154 – Campinas – SP – CEP 13.084-971, Brazil
Abstract
Magnetorheological suspensions (MRS) based on mixtures of two commercial carbonyl iron powders (BASF grades CL and SU) as magnetic phase and hydrocarbon oil as liquid phase were prepared. CL and SU are both soft magnetic powders, but CL is a coarse powder, while SU is a fine one. The total mass fraction of iron was 80% w/w each formulation. Hydrophilic fumed silica (5% w/w of Aerosil® 200) was used to reduce the settling. The mixing ratios were: CL 0%, CL 20%, CL 40%, CL 60%, CL 80% and CL 100%. A MRS, the mixture CL 80%, showed considerable reduction of the plastic viscosity without field, in the range of 100 – 500 s-1, when compared to the MRS with just one powder. The yield stress values under applied field H ~ 340 kA/m were: 18.1 kPa for the MRS CL 0%, 18.3 kPa for the MRS's CL 20% and CL 40%, 20.0 kPa for the MRS CL 60%, 22.3 kPa for the MRS CL 80% and 23.3 kPa for the MRS CL 100%, respectively. For comparison, a sample of commercial MRF-132LD (Lord Corp.) in the same conditions showed yield value of 21.2 ± 0.6 kPa. On the other hand, another MRS, CL 60%, showed an increment of ~ 33% on the normal force, with relation to the MRS prepared with just CL or just SU powders, above 150 kA/m. Therefore, mixing carbonyl iron powders with different particle sizes can improve the performance of MRS, decreasing the 'off' plastic viscosity, and increasing the MR effect.
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献