Annealing study of amorphous bulk and nanoparticle iron using molecular dynamics simulation

Author:

Kien P. H.1,Lan M. T.2,Dung N. T.2,Hung P. K.2

Affiliation:

1. Department of Physics, Thainguyen University of Education, 20 Luong Ngoc Quyen, Thainguyen, Vietnam

2. Department of Computational Physics, Hanoi University of Technology, 1 Dai Co Viet, Hanoi, Vietnam

Abstract

Annealing study of amorphous bulk and nanoparticle iron at temperatures from 500 K to 1000 K has been carried out using molecular dynamics (MD) simulations. The simulation is performed for models containing 104 particles Fe at both crystalline and amorphous states. We determine changes of the potential energy, pair radial distribution function (PRDF) and distribution of coordination number (DCN) as a function of annealing time. The calculation shows that the aging slightly reduces the potential energy of system. This result evidences that the amorphous sample undergoes different quasi-equilibrated states during annealing. Similar trend is observed for nanoparticles sample. When the samples are annealed at high temperatures we observe the crystallization in both bulk and nanoparticle. In particular, the system undergoes three stages. At first stage the relaxation proceeds slowly so that the energy of system slightly decreases and the samples structure remains amorphous. Within second stage a structural transformation occurs which significantly changes PRDF and DCN for the relatively short time. The energy of the system is dropped considerably and the amorphous structure transforms into the crystalline. Finally, the crystalline sample undergoes the slow relaxation which reduces the energy of system and eliminates structural defects in crystal lattices.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3