Controllable negative differential resistance on charge transport through strained and tilted DNA molecules

Author:

Joe Yong S.1ORCID,Malakooti Sadeq2,Hedin Eric R.3

Affiliation:

1. Center for Computational Nanoscience, Department of Physics and Astronomy, Ball State University, Muncie, IN 47306, USA

2. Mechanics of Advanced Materials Laboratory, Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA

3. Department of Chemistry, Physics and Engineering, Biola University, La Mirada, CA 90639, USA

Abstract

A double-stranded DNA molecule subject to a perpendicular gating electric field and a small mechanical strain exhibits a negative differential resistance (NDR) in its current–voltage (I–V) characteristics. Using an advanced two-dimensional tight-binding model including hopping integrals for the next nearest-neighbors, we implement perturbative strain- and tilted angle-dependent DNA helix conformation in conjunction with the theories of Slater–Koster and linear elasticity. The degree of NDR can be tuned by adjusting the tilt angle and mechanical strain of the DNA. This effect arises because of a surface charge distribution near the contacts due to the normal component of the electric field and structural change of the DNA molecule due to the strain. It is shown that enhancement of NDR peak current and a large peak-to-valley ratio of NDR are achieved by an increase of the tilt angle and stretching strain. Finally, a series of step-like current jumps without NDR features are exhibited in the weak DNA-lead coupling regime. This disappearance of NDR stems from the fact that reduced conduction through metal electrodes with a sufficiently small tunneling rate compensates the current drop.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3