Qualitative analysis of gain spectra of InGaAlAs/InP lasing nano-heterostructure

Author:

Lal Pyare1,Yadav Rashmi1,Sharma Meha2,Rahman F.3,Dalela S.4,Alvi P. A.1

Affiliation:

1. Department of Physics, Banasthali Vidyapith-304022, Rajasthan, India

2. Department of Electronics, Banasthali Vidyapith-304022, Rajasthan, India

3. Department of Physics, Aligarh Muslim University, Aligarh-202002, UP, India

4. Department of Pure & Applied Physics, University of Kota, Kota, Rajasthan, India

Abstract

This paper deals with the studies of lasing characteristics along with the gain spectra of compressively strained and step SCH based In 0.71 Ga 0.21 Al 0.08 As/InP lasing nano-heterostructure within TE polarization mode, taking into account the variation in well width of the single quantum well of the nano-heterostructure. In addition, the compressive conduction and valence bands dispersion profiles for quantum well of the material composition In 0.71 Ga 0.21 Al 0.08 As at temperature 300 K and strain ~1.12% have been studied using 4 × 4 Luttinger Hamiltonian. For the proposed nano-heterostructure, the quantum well width dependence of differential gain, refractive index change and relaxation oscillation frequency with current density have been studied. Moreover, the G–J characteristics of the nano-heterostructure at different well widths have also been investigated, that provided significant information about threshold current density, threshold gain and transparency current density. The results obtained in the study of nano-heterostructure suggest that the gain and relaxation oscillation frequency both are decreased with increasing quantum well width but the required lasing wavelength is found to shift towards higher values. On behalf of qualitative analysis of the structure, the well width of 6 nm is found more suitable for lasing action at the wavelength of 1.55 μm due to minimum optical attenuation and minimum dispersion within the waveguide. The results achieved are, therefore, very important in the emerging area of nano-optoelectronics.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3