Analysis of unsteady MHD fluid flow across two parallel discs with uniform fluctuation subject to modified Hall and activation energy

Author:

Ali Bilal1ORCID,Jubair Sidra2ORCID,Mahmood Zafar3ORCID,Koka Nisar Ahmad4,Gani Abdul Hamid5ORCID

Affiliation:

1. School of Mathematics and Statistics, Central South University, Changsha 410083, P. R. China

2. School of Mathematical Sciences, Dalian University of Technology, 116024, Dalian, P. R. China

3. Department of Mathematics and Statistics, Hazara University Mansehra, Pakistan

4. Department of English, Faculty of Languages and Translation, King Khalid University, Abha Kingdom of Saudi Arabia

5. Basic Science Department, College of Science and Theoretical Studies, Saudi Electronic University, Riyadh 11673, Saudi Arabia

Abstract

This study intends to examine the consequences of the externally applied magnetic field and modified Hall effect on nanofluid flow across two symmetrically spinning and extending discs, where continuously the upper disc moves upward and downward. The lower disc is vertically fixed. The discs rotate and move vertically, generating a 3D flow. The mass density, heat transfer and flow motion have been evaluated and modeled in the form of the system of partial differential equations (PDEs) with an additional influence of activation energy, heat source and chemical reaction. The system of PDEs is modified to an ordinary set of differential equations by employing the resemblance substitution method. The obtained system of ODEs is further solved through the numerical approach (bvp4c). The results are compared to the bvp4c package and published work for validity purposes. In the case of downward displacement of the upper disc, magnetic and Hall characteristics have a significant impact on the velocity curve. The energy curve elevates with the upward movement of the disc, while it reduces with the downward fluctuation. Furthermore, the mass transmission rate enhances with the influence of hall current, while diminishing with the impact of chemical reaction rate.

Funder

Deanship of Scientific Research at King Khalid University

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3