Influence of peak current on substrate plasma sheath properties of Ti films deposited by high-power pulsed magnetron sputtering

Author:

Chen C. Z.12,Ma D. L.1,Huang N.1,Leng Y. X.1

Affiliation:

1. Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China

2. Jingchu University of Technology, Jingmen, Hubei 448000, P. R. China

Abstract

For film deposition, the substrate sheath properties, such as the plasma density, ion-to-atom ratios around the substrate, are more important for the film structure. In this paper, titanium thin films were deposited on grounded substrates by high-power pulsed magnetron sputtering (HPPMS) with the peak current in the range of 113–185 A. A simple and new equivalent circuit model of the sheath was established to study the plasma density around the substrate sheath. The Ti ion-to-atom ratios near substrate were studied by optical emission spectroscopy (OES), and the film structure was detected by transmission electron microscopy (TEM). The results showed that the calculated plasma density was from 0.8 × 10[Formula: see text] to 1.4 × 10[Formula: see text] m[Formula: see text] at different peak current. These were consistent with the results measured by a modified one-grid ion collector using saturation current probe method, which proved our proposed equivalent circuit model was correct. The Ti ion-to-atom ratios around the substrate were estimated at about 24%–62%. The plasma density and ion to atom ratio around the substrate increased with the peak current, and this could lead to a higher film crystallization and preference growth on Ti (101) and (100).

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3