Bandgap tuning in ZnO thin films and enhanced n-type properties through Mn doping synthesized by a simple spray pyrolysis

Author:

Khorshed Alam Md.1,Sharmin Mehnaz1,Podder Jiban1ORCID

Affiliation:

1. Department of Physics, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh

Abstract

Undoped and manganese (Mn)-doped zinc oxide (ZnO) thin films have been deposited onto glass substrates at 300[Formula: see text]C using a low cost spray pyrolysis technique. Structural, optical and electrical properties of the as-deposited films have been investigated. Scanning electron microscopy images show the existence of clusters with well-defined nucleation centers consisting of highly dense ganglia-like fibers over a large area around the nucleation center. Chemical compositions of the ZnO and Mn-doped ZnO thin films are studied by using energy dispersive X-ray (EDX) analysis. X-ray diffraction spectra depict that the films have polycrystalline wurtzite structure. The average crystallite sizes are calculated in the range of 8–16 nm by Williamson–Hall method and found in good agreement with Scherer method. Optical transmittance of the films is about 80% in the visible region. Bandgap energy is tuned to 2.83 eV from 3.10 eV with increasing Mn doping. Electrical resistivity at room-temperature decreases significantly with increasing Mn doping as well as increasing temperature from 300–440 K. The activation energies in the temperature ranges 300–350 K and 350–440 K are found to be in the range of 0.25–0.16 eV and 0.35–0.59 eV, respectively. Hall Effect measurements show that the thin films have negative Hall co-efficient indicating [Formula: see text]-type conductivity at room-temperature. Carrier concentration is found to be of the order of 10[Formula: see text] cm[Formula: see text].

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3