Influence of reaction temperature on phase assemblage and morphologies of SiC nanowires by a carbothermal reduction method

Author:

Ding Yu1,Zhao Kai1,Cui Haitao1,He Zhen1,Yin Li1

Affiliation:

1. School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China

Abstract

3C-SiC nanowires were synthesized using Si, SiO2, and active carbon as raw materials at different reaction temperatures without additional metal catalysts. The influence of reaction temperature on the phase assemblage and morphologies of the products were investigated by XRD and SEM. The experimental results indicate that a suitable reaction temperature is essential for the final products. When the reaction temperature was not high enough (1400 and 1450C), the raw materials were not reacted completely, and a small amount of targeted nanowires were formed. When reaction temperature increased to 1500C, the nanowires were mainly composed of 3C-SiC phase, and they were straight, curved, and needle-shaped. The straight nanowires ranged from several to tens of microns, but the diameters were not uniform. The vapor-solid mechanism dominantly governed the formation of SiC nanowires.

Funder

Jiangsu University of Science and Technology

High-Level Entrepreneurial and Innovative Talents Introduction of Jiangsu Province

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3