Multiple convected conditions in Williamson nanofluidic flow with variable thermal conductivity: Revised bioconvection model

Author:

Gangadhar Kotha1ORCID,Rupa Lavanya M.1,Chamkha Ali J.2

Affiliation:

1. Department of Mathematics, Acharya Nagarjuna University Campus, Ongole, Andhra Pradesh 523001, India

2. Faculty of Engineering, Kuwait College of Science and Technology, Doha Area, 7th Ring Road, Doha District 35004, Kuwait

Abstract

The importance of bioconvection into the application of nanoparticles has had a significant impact on fundamental technological and industrial functions in recent years. These discussions are being carried forward by the bioconvection appearance on that flow by attracting nanoparticles into additional features on thermal radiation and activation energy. The investigation had been proposed on the appealing features of the mass and thermal convective boundary constraints. The high desirable subclass on rate-type fluid, especially Williamson fluid, was used to anticipate the absolute rheological parameters. The designated partial differential system was modified along with nonlinear ordinary differential equations applying enhance being related conversion, the designated partial differential system was modified along nonlinear ordinary differential equations. The governing equations are interpreted into ordinary differential equations, and in the following, shooting process was obeyed to build up the mathematical classification on the convert dimensionless flow problem. This value of physical restraint was displayed on the table and plots tests. This noted theoretical imitation could be highly successful in improving the solar energy systems and thermal extrusion processes. The outcomes reported that the rise in Weissenberg number and Hartmann number decreased the nanoparticles velocity distribution. The progressing temperature distribution was observed to develop radiation parameter and thermal conductivity parameter. That was further noted to modify bioconvection Lewis number and Peclet number that were reduced into motile microorganism distribution effectively.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3