Influence of complete slip conditions on peristaltic transport of third-grade fluid with suction and injection

Author:

Lakshmi R.1,Kavitha A.1ORCID

Affiliation:

1. Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, India

Abstract

This study is important for the fields of pharmaceutical nano-drug suspension, biomedical engineering, pressure surges and food processing systems. The slip condition is necessary for polishing internal cavities and artificial heart valves in a variety of manufactured objects, micro- or nano-channels, and applications. Low Reynolds number (Re[Formula: see text] and long wavelength ([Formula: see text]) considerations are used in the formulation of the mathematical model at low non-Newtonian parameter values, nonlinear boundary conditions and the governing nonlinear equation are analytically solved using the perturbation method. The graphs of frictional force, pressure rise, velocity, pressure gradient, and streamline graphs are done using Wolfram MATHEMATICA software. In this paper, we compared the results of the total slip condition with those of the first-order slip condition and the absence of any slip effects. It has been noticed that increasing the suction and injection parameters leads to a decrease the pressure rate with complete slip effects, partial slip effects and no slip effects. We show that an increase in the third grade fluid parameter [Formula: see text] increases the magnitude of axial velocity. From a physical perspective, it shows the shear thinning characteristic, which causes a decrease in viscosity and an increase in fluid velocity. Frictional force behaves differently when compared to pressure rate. In other words, the pressure gradient acts as an obstacle to the peristalsis-driven flow. The objective of the study is to find the impact of the peristaltic flow phenomena and the impact of peristaltic on third-grade non-Newtonian fluid where the suction and injection are prevailing which is similar to the thing in biomechanical devices, like blood vessels, etc. there is a change of oxygen and carbon dioxide from the tissue layer to the fluid within the blood vessel.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3