Firing patterns of the CA1 pyramidal neuron with geometric singular perturbation: a model study

Author:

Liu Yaru1ORCID,Liu Shenquan1

Affiliation:

1. School of Mathematics, South China University of Technology, Guangzhou 510641, P. R. China

Abstract

An investigation of CA1 pyramidal model is an important issue for applications, which is intimately related to the composition of ions in the extracellular environment and external stimulation. In this paper, it is demonstrated that the effects of different electrophysiological parameters such as muscarinic-sensitive potassium current activation variable and sustained sodium current inactivation variable on the firing sequence of model by numerical simulations. Furthermore, the paper also discusses that the temperature affects the firing of the CA1 model from direct current (DC) and alternating current (AC) stimuli. It is found that the model exhibits excellent spiking and bursting patterns, even chaotic patterns occur. Meanwhile, generalized mixed oscillations emerge in the model. Additionally, the firing modes are depicted by providing the response curve (RC), inter-spike interval curve (ISI), phase diagram curve (PDC) and the number of spikes per burst curve (NC). Mathematically, the paper elaborates the results which are presented to obtain two lower dimensional subsystems, which govern the fast and slow dynamics for giving insight into the dynamic behaviors of the full 5D system based on the geometric singular perturbation theory (GSPT). Particularly, we analyse the phase diagrams of the CA1 model to understand the properties better. The present results may contribute to further understand the information processing of the CA1 pyramidal neurons.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3