Illustration of Joule dissipation on the time-dependent stagnation point flow of nanofluid through a porous surface

Author:

Mishra S. R.1,Sharma Ram Prakash2ORCID,Swain Laxmipriya3

Affiliation:

1. Department of Mathematics, Siksha ’O’ Anusandhan Deemed to be University, Khandagiri, Bhubaneswar, Odisha 751030, India

2. Department of Mechanical Engineering, National Institute of Technology, Arunachal Pradesh 791113, India

3. Research Scholar, Department of Basic and Applied Science, National Institute of Technology, Arunachal Pradesh 791113, India

Abstract

The proposed flow problem is to analyze the behavior of dissipative heat on the time-dependent stagnation motion of nanofluids through a permeable surface. A novel approach to thermal buoyancy through the permeable medium enriches the flow properties. In the recent industrial applications for the cooling processes of the device, like the physiological application of the blood flow inside the capillary tube-like artery, drug delivery system, etc., the role of nanofluid is crucial. The proposed model equipped with various physical properties is used to design and subsequent transformation into a non-dimensional form is obtained for a set of similarity variables. Proposed models with different physical properties are designed and subsequent dimensionless transformations are obtained for a similar set of variables. In addition, shooting based Runge-Kutta fourth-order numerical technique is used to solve boundary value problems for nonlinear ordinary systems. The characteristics of the diversified quantities are presented graphically as well as numerically on the flow profile and other profiles. Furthermore, statistical approaches such as t-tests for simulated results of rate coefficients are also presented and validated with the obtained results. However, the important outcomes are presented as; the fluid velocity is controlled by the inclusion of the particle concentration as well as the magnetic parameter further the particle concentration and the dissipative heat encountered by the inclusion of Eckert number enhances the fluid temperature.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3