Effect of leading-edge plate controlling on subsonic cavity

Author:

Zhou Fang-Qi12,Yang Dang-Guo12,Wang Xian-Sheng2,Wu Jun-Qiang2,Lu Bo2

Affiliation:

1. State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, P. R. China

2. High Speed Aerodynamics Research Institute, China Aerodynamics Research and Development Center, Mianyang 621000, P. R. China

Abstract

Cavity noise caused by the high-speed airflow has been paid much attention in the field of aerospace, and the study of cavity noise suppression has an important significance on improving the safety of aircraft. Effects of the leading-edge plate on the flow and the noise of the cavity model (the ratio of length to depth is 6) at a Mach number (Ma) of 0.6 are investigated with high-speed wind tunnel experiment. The acoustic and the flow field information in the cavity are obtained with the dynamic/static pressure measurement and oil flow experiment. The result shows that the leading-edge plate can greatly lift the shear layer, raise the impact position on the back-wall area, and reduce the flux rate and intensity in the cavity. With the controlling of leading-edge plate, the static pressure and backflow area are effectively suppressed and the SPL and peak noise also fall down significantly. The leading-edge plate provides a new method for cavity noise suppression in subsonic flow condition, which can be effectively applied to flow/noise controlling of cavity structure on aircraft.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3