Effect of Mo doping on the microstructure and properties of an Fe36Ni Invar alloy

Author:

Dong Liming123ORCID,Yu Zhaopeng1,Hu Xianjun3,Feng Fang2

Affiliation:

1. School of Automotive Engineering, Changshu Institute of Technology, Changshu 215500, P. R. China

2. School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China

3. Institute of Research of Iron and Steel, Shasteel, Zhangjiagang 215625, P. R. China

Abstract

The effects of doping with different Mo contents on the microstructure and properties of Fe36Ni Invar alloys were investigated. The results show that when 0.9 wt.% Mo and 1.8 wt.% Mo were added to Fe36Ni, the tensile strengths of the hot rolled alloys were 46 and 61 MPa higher than that of the 0 wt.% Mo sample, respectively. With an increase in Mo content from 0.9 to 1.8 wt.%, the solution temperature of the highest hardness after heat treatment increased from 800[Formula: see text]C to 850[Formula: see text]C, respectively. The addition of 0.9 wt.% Mo refined the average grain size from 37 to 15 [Formula: see text]m, and an excessive amount of Mo (1.8 wt.%) did not refine the grains further. After Mo was added, the precipitates on the original grain boundaries changed into nanoprecipitates dispersed in the grain boundaries and inside the grains. Mo was present in the alloy in the form of a carbide and in solid solution, which affected the magnetic lattice effect and increased the thermal expansion coefficient of the alloy. However, upon comparing the samples doped with 0 wt.% Mo, 0.9 wt.% Mo and 1.8 wt.% Mo, it was found that the addition of 0.9 wt.% Mo not only refined the grain size and improved the mechanical properties of the alloy but also led to a low coefficient of thermal expansion (CTE) over the range from 20[Formula: see text]C to 300[Formula: see text]C.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation project

Jiangsu Province Postdoctoral Foundation project

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rapid Solidification of Invar Alloy;Materials;2023-12-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3