Generalized slip impact of Casson nanofluid through cylinder implanted in swimming gyrotactic microorganisms

Author:

Gangadhar Kotha1ORCID,Sujana Sree T.1,Wakif Abderrahim2ORCID

Affiliation:

1. Department of Mathematics, Acharya Nagarjuna University, Guntur 522510, Andhra Pradesh, India

2. Laboratory of Mechanics, Faculty of Sciences Ain Chock, Hassan II University of Casablanca 20000, Morocco

Abstract

In this paper, the self-propelled movement on gyrotactic swimming microorganisms into this generalized slip flow by nanoliquid over the stretching cylinder with strong magnetic field is discussed. Constant wall temperature was pretended as well as the Nield conditions of boundary. The intuitive non-Newtonian particulate suspension was included into applying Casson fluid by the base liquid and nanoparticles. This formation on the bio-mathematical model gives the boundary value problem by the nonlinear partial differential equations. Primly, modeled numerical system was converted to nondimensional against this help on acceptable scaling variables and the bvp4c technique was used to acquire the mathematical outcomes on the governing system. This graphical description by significant parameters and their physical performance was widely studied. The Prandtl number has the maximum contribution (112.595%) along the selected physical parameters, whereas the Brownian motion has the least (0.00165%) heat transfer rate. Anyhow, Casson fluid was established for much helpful suspension of this method on fabrication and coatings, etc. Therefore, this magnetic field performs like the resistive force of that fluid motion, and higher energy was enlarged into the structure exhibiting strong thermal radiation.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3