Monte Carlo random walk simulation of transient absorption kinetics using reflectance and absorption of electrons at Au/TiO2 nanoparticle boundaries

Author:

Wang Junli1ORCID,Furube Akihiro2ORCID

Affiliation:

1. Department of Optical Science, Graduate School of Sciences and Technology for Innovation, Tokushima University, 2-1 Minamijosanjima Cho, Tokushima 770-85066, Japan

2. Institute of Post-LED Photonics, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan

Abstract

To understand plasmon-induced charge-transfer mechanisms between a photo-excited gold (Au) nanoparticle and a TiO2 nanoparticle, a Monte Carlo random walk (MCRW) simulation was applied to reproduce the charge recombination kinetics in the nanocrystalline (Au/TiO[Formula: see text] assemblies reported previously based on transient absorption spectroscopy. The Au/TiO2 assemblies consist of a confined electron diffusion space within a tiny TiO2 nanoparticle, making it possible to study electron diffusion transport through MCRW simulation. In this simulation algorithm, the electron diffusion starts at the coordinate origin of a rectangle, and the next direction of movement is obtained by calculating the coordinate matrix and random offset so that the electron is reflected on three boundaries and absorbed when it reaches the other boundary. By simulation programming, the histogram which indicates the occurrence frequency of the step accumulation number up to the right boundary was obtained. From 100 to 100000 steps under condition of 10000 iteration, that is, changing the steps but keeping the iteration times to ensure that all particles experience absorption in the simulation. Comparing the trace of 106 particles position with that of 104 under 1000 simulations, the electron density was found to saturate other than the region near the right boundary, where electrons disappear by the absorption process during the electron diffusion process. Finally, by fitting curves, it is confirmed that the tendency of the simulated response reproduced the transient absorption kinetics.

Funder

KAKENHI

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3