A two-stage multi-step numerical scheme for mixed convective Williamson nanofluid flow over flat and oscillatory sheets

Author:

Nawaz Yasir1,Arif Muhammad Shoaib12,Abodayeh Kamaleldin2,Soori Atif Hassan1

Affiliation:

1. Department of Mathematics, Air University, PAF Complex E-9, Islamabad 44000, Pakistan

2. Department of Mathematics and Sciences, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia

Abstract

The novelty of this contribution is to propose an implicit numerical scheme for solving time-dependent boundary layer problems. The scheme is multi-step and consists of two stages. It is third-order accurate in time and constructed on three-time levels. For spatial discretization, a fourth-order compact scheme is adopted. The stability of the proposed scheme is analyzed for scalar linear partial differential equation (PDE) that shows its conditional stability. The convergence of the scheme is also provided for a system of time-dependent parabolic equations. Moreover, a mathematical model for heat and mass transfer of mixed convective Williamson nanofluid flow over flat and oscillatory sheets is modified with the characteristic of the Darcy–Forchheimer model. The results show that the temperature profile rises by developing thermophoresis and Brownian motion parameter values. Also, the proposed scheme is compared with an existing Crank–Nicolson method. It is found that the proposed scheme converges faster than the existing one for solving scalar linear PDE as well as the system of linear and nonlinear parabolic equations, which are dimensionless forms of governing equations of a flow phenomenon. The findings provided in this study can serve as a helpful guide for future investigations into fluid flow in closed-off industrial settings.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3