MULTI-VIEW GENDER CLASSIFICATION USING MULTI-RESOLUTION LOCAL BINARY PATTERNS AND SUPPORT VECTOR MACHINES

Author:

LIAN HUI-CHENG1,LU BAO-LIANG1

Affiliation:

1. Department of Computer Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Rd., Shanghai, 200240, China

Abstract

In this paper, we present a novel method for multi-view gender classification considering both shape and texture information to represent facial images. The face area is divided into small regions from which local binary pattern (LBP) histograms are extracted and concatenated into a single vector efficiently representing a facial image. Following the idea of local binary pattern, we propose a new feature extraction approach called multi-resolution LBP, which can retain both fine and coarse local micro-patterns and spatial information of facial images. The classification tasks in this work are performed by support vector machines (SVMs). The experiments clearly show the superiority of the proposed method over both support gray faces and support Gabor faces on the CAS-PEAL face database. A higher correct classification rate of 96.56% and a higher cross validation average accuracy of 95.78% have been obtained. In addition, the simplicity of the proposed method leads to very fast feature extraction, and the regional histograms and fine-to-coarse description of facial images allow for multi-view gender classification.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3