A COMPARATIVE STUDY OF DATA SAMPLING TECHNIQUES FOR CONSTRUCTING NEURAL NETWORK ENSEMBLES

Author:

AKHAND M. A. H.1,ISLAM MD. MONIRUL1,MURASE KAZUYUKI12

Affiliation:

1. Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan

2. Research and Education Program for Life Science, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan

Abstract

Ensembles with several classifiers (such as neural networks or decision trees) are widely used to improve the generalization performance over a single classifier. Proper diversity among component classifiers is considered an important parameter for ensemble construction so that failure of one may be compensated by others. Among various approaches, data sampling, i.e., different data sets for different classifiers, is found more effective than other approaches. A number of ensemble methods have been proposed under the umbrella of data sampling in which some are constrained to neural networks or decision trees and others are commonly applicable to both types of classifiers. We studied prominent data sampling techniques for neural network ensembles, and then experimentally evaluated their effectiveness on a common test ground. Based on overlap and uncover, the relation between generalization and diversity is presented. Eight ensemble methods were tested on 30 benchmark classification problems. We found that bagging and boosting, the pioneer ensemble methods, are still better than most of the other proposed methods. However, negative correlation learning that implicitly encourages different networks to different training spaces is shown as better or at least comparable to bagging and boosting that explicitly create different training spaces.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Reference25 articles.

1. T. G. Dietterich, The Handbook of Brain Theory and Neural Networks, 2nd edn. (2002) pp. 405–408.

2. Creating diversity in ensembles using artificial data

3. Switching class labels to generate classification ensembles

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3