IMPROVING SUPERVISED LEARNING BY ADAPTING THE PROBLEM TO THE LEARNER

Author:

MENKE JOSHUA1,MARTINEZ TONY1

Affiliation:

1. Computer Science Department, Brigham Young University, 3365 TMCB, Provo, UT, USA

Abstract

While no supervised learning algorithm can do well over all functions, we show that it may be possible to adapt a given function to a given supervised learning algorithm so as to allow the learning algorithm to better classify the original function. Although this seems counterintuitive, adapting the problem to the learner may result in an equivalent function that is "easier" for the algorithm to learn. One method of adapting a problem to the learner is to relabel the targets given in the training data. The following presents two problem adaptation methods, SOL-CTR-E and SOL-CTR-P, variants of Self-Oracle Learning with Confidence-based Target Relabeling (SOL-CTR) as a proof of concept for problem adaptation. The SOL-CTR methods produce "easier" target functions for training artificial neural networks (ANNs). Applying SOL-CTR over 41 data sets consistently results in a statistically significant (p < 0.05) improvement in accuracy over 0/1 targets on data sets containing over 10,000 training examples.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Reference9 articles.

1. P. L. Bartlett, Advances in Neural Information Processing Systems 9, eds. M. C. Mozer, M. I. Jordan and T. Petsche (The MIT Press, 1997) p. 134.

2. R. Caruana, S. Baluja and T. Mitchell, Advances in Neural Information Processing Systems, eds. D. S. Touretzky, M. C. Mozer and M. E. Hasselmo (The MIT Press, Cambridge, MA, 1996) pp. 959–965.

3. Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms

4. A. Krogh and J. A. Hertz, Advances in Neural Information Processing Systems 4, eds. J. E. Moody, S. J. Hanson and R. P. Lippmann (Morgan Kaufmann Publishers, Inc., 1992) pp. 950–957.

5. Y. LeCun, Neural Networks: Tricks of the Trade, Lecture Notes in Computer Science 1524, eds. G. B. Orr and K.R. Müller (Springer, 1996) pp. 9–50.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. BIOLOGICALLY INSPIRED FACE RECOGNITION: TOWARD POSE-INVARIANCE;International Journal of Neural Systems;2012-11-27

2. ENSEMBLES OF NEURAL NETWORKS BASED ON THE ALTERATION OF INPUT FEATURE VALUES;International Journal of Neural Systems;2012-02

3. THE S2-ENSEMBLE FUSION ALGORITHM;International Journal of Neural Systems;2011-12

4. EFFICIENT KERNELIZED PROTOTYPE BASED CLASSIFICATION;International Journal of Neural Systems;2011-12

5. ARTIFICIAL METAPLASTICITY NEURAL NETWORK APPLIED TO CREDIT SCORING;International Journal of Neural Systems;2011-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3