Affiliation:
1. Lappeenranta University of Technology, Department of Information Technology, Box 20, 53851 Lappeenranta, Finland
Abstract
A single neuron with Hebbian-type learning for the connection weights, and with nonlinear internal feedback, has been shown to extract the statistical principal components of its stationary input pattern sequence. A generalization of this model to a layer of neuron units is given, called the Subspace Network, which yields a multi-dimensional, principal component subspace. This can be used as an associative memory for the input vectors or as a module in nonsupervised learning of data clusters in the input space. It is also able to realize a powerful pattern classifier based on projections on class subspaces. Some classification results for natural textures are given.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computer Networks and Communications,General Medicine
Cited by
550 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献