DNA FRAGMENT ASSEMBLY USING NEURAL PREDICTION TECHNIQUES

Author:

ANGELERI E.1,APOLLONI B.1,FALCO D. DE1,GRANDI L.1

Affiliation:

1. Dipartimento di Scienze dell'Informazione, University of Milan, 20135, Milan, Italy

Abstract

The paper describes an alternative approach to the fragment assembly problem. The key idea is to train a recurrent neural network to tracking the sequence of bases constituting a given fragment and to assign to a same cluster all the sequences which are well tracked by this network. We make use of a 3-layer Recurrent Perceptron and examine both edited sequences from a ftp site and artificial fragments from a common simulation software: the clusters we obtain exhibit interesting properties in terms of error filtering, stability and self consistency; we define as well, with a certain degree of approximation, a metric on the fragment set. The proposed assembly algorithm is susceptible to becoming an alternative method with the following properties: (i) high quality of the rebuilt genomic sequences, (ii) high parallelizability of the computing process with consequent drastic reduction of the running time.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DNA Fragment Assembly Using Quantum-Inspired Genetic Algorithm;Research Anthology on Advancements in Quantum Technology;2021

2. DNA Fragment Assembly Using Quantum-Inspired Genetic Algorithm;Research Anthology on Multi-Industry Uses of Genetic Programming and Algorithms;2021

3. Recent Advances in Gene and Genome Assembly: Challenges and Implications;Advances in Synthetic Biology;2020

4. DNA Fragment Assembly Using Quantum-Inspired Genetic Algorithm;Exploring Critical Approaches of Evolutionary Computation;2019

5. Machine learning meets genome assembly;Briefings in Bioinformatics;2018-08-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3