Nordhaus–Gaddum-Type Results for the Strong Equitable Vertex k-Arboricity of Graphs

Author:

Guo Zhiwei1

Affiliation:

1. College of Mathematics and Computer Science, Yan’an University, Yan’an, Shaanxi 716000, P. R. China

Abstract

For a graph [Formula: see text] and positive integers [Formula: see text], [Formula: see text], a [Formula: see text]-tree-vertex coloring of [Formula: see text] refers to a [Formula: see text]-vertex coloring of [Formula: see text] satisfying every component of each induced subgraph generated by every set of vertices with the same color forms a tree with maximum degree not larger than [Formula: see text], and it is called equitable if the difference between the cardinalities of every pair of sets of vertices with the same color is at most [Formula: see text]. The strong equitable vertex [Formula: see text]-arboricity of [Formula: see text], denoted by [Formula: see text], is defined as the least positive integer [Formula: see text] satisfying [Formula: see text], which admits an equitable [Formula: see text]-tree-vertex coloring for each integer [Formula: see text] with [Formula: see text]. The strong equitable vertex [Formula: see text]-arboricity of a graph is very useful in graph theory applications such as load balance in parallel memory systems, constructing timetables and scheduling. In this paper, we present the tight upper and lower bounds on [Formula: see text] for an arbitrary graph [Formula: see text] with [Formula: see text] vertices and a given integer [Formula: see text] with [Formula: see text], and we characterize the extremal graphs [Formula: see text] with [Formula: see text], [Formula: see text], [Formula: see text], respectively. Based on the above extremal results, we further obtain the Nordhaus–Gaddum-type results for [Formula: see text] of graphs [Formula: see text] with [Formula: see text] vertices for a given integer [Formula: see text] with [Formula: see text].

Funder

the Natural Science Foundation of Shaanxi Province

NSFC

Doctoral Research Foundation of Yan’an University

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Networks and Communications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3