Self-Trained Stacking Model for Semi-Supervised Learning

Author:

Karlos Stamatis1ORCID,Fazakis Nikos2,Kotsiantis Sotiris3,Sgarbas Kyriakos4

Affiliation:

1. Department of Mathematics, University of Patras, Patras, 26500, Greece

2. Department of Electrical and Computer Engineering, University of Patras, Patras, 26500, Greece

3. Department of Mathematics, University of Patras, Educational Software Development Laboratory, Patras, 26500, Greece

4. Department of Electrical and Computer Engineering, University of Patras, Wire Communications Laboratory, Patras, 26500, Greece

Abstract

The most important characteristic of semi-supervised learning methods is the combination of available unlabeled data along with an enough smaller set of labeled examples, so as to increase the learning accuracy compared with the default procedure of supervised methods, which on the other hand use only the labeled data during the training phase. In this work, we have implemented a hybrid Self-trained system that combines a Support Vector Machine, a Decision Tree, a Lazy Learner and a Bayesian algorithm using a Stacking variant methodology. We performed an in depth comparison with other well-known Semi-Supervised classification methods on standard benchmark datasets and we finally reached to the point that the presented technique had better accuracy in most cases.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Artificial Intelligence

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3