Possibilistic Intuitionistic Fuzzy c-Means Clustering Algorithm for MRI Brain Image Segmentation

Author:

Verma Hanuman1,Agrawal R. K.1

Affiliation:

1. School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi 110067, India

Abstract

Accurate segmentation of human brain image is an essential step for clinical study of magnetic resonance imaging (MRI) images. However, vagueness and other ambiguity present between the brain tissues boundaries can lead to improper segmentation. Possibilistic fuzzy c-means (PFCM) algorithm is the hybridization of fuzzy c-means (FCM) and possibilistic c-means (PCM) algorithms which overcomes the problem of noise in the FCM algorithm and coincident clusters problem in the PCM algorithm. A major challenge posed in the PFCM algorithm for segmentation of ill-defined MRI image with noise is to take into account the ambiguity in the final localization of the feature vectors due to lack of qualitative information. This may lead to improper assignment of membership (typicality) value to their desired cluster. In this paper, we have proposed the possibilistic intuitionistic fuzzy c-means (PIFCM) algorithm for Atanassov’s intuitionistic fuzzy sets (A-IFS) which includes the advantages of the PCM, FCM algorithms and A-IFS. Real and simulated MRI brain images are segmented to show the superiority of the proposed PIFCM algorithm. The experimental results demonstrate that the proposed algorithm yields better result.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Artificial Intelligence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3