COMPUTING SIGNED PERMUTATIONS OF POLYGONS

Author:

ALOUPIS GREG1,BOSE PROSENJIT2,DEMAINE ERIK D.3,LANGERMAN STEFAN4,MEIJER HENK5,OVERMARS MARK6,TOUSSAINT GODFRIED T.7

Affiliation:

1. Institute of Information Science, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan

2. School of Computer Science, Carleton University, 5302 Herzberg Lab, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada

3. Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar Street Cambridge, MA 02139, USA

4. Maître de Recherches du FRS-FNRS, Département d'Informatique, Université Libre de Bruxelles, Boulevard du Triomphe, CP 212 Bruxelles, Belgique

5. Science Department, Roosevelt Academy, P.O. Box 94, Middelburg NL-4330 AB, Netherlands

6. Department of Information and Computing Sciences, Utrecht University, Padualaan 14, De Uithof, P.O. Box 80.089, Utrecht 3508 TB, Netherlands

7. School of Computer Science, McGill University, 3480 University Street, Montreal, Quebec H3A 2A7, Canada

Abstract

Given a planar polygon (or chain) with a list of edges {e1, e2, e3, …, en-1, en}, we examine the effect of several operations that permute this edge list, resulting in the formation of a new polygon. The main operations that we consider are: reversals which involve inverting the order of a sublist, transpositions which involve interchanging subchains (sublists), and edge-swaps which are a special case and involve interchanging two consecutive edges. When each edge of the given polygon has also been assigned a direction we say that the polygon is signed. In this case any edge involved in a reversal changes direction. We show that a star-shaped polygon can be convexified using O(n2) edge-swaps, while maintaining simplicity, and that this is tight in the worst case. We show that determining whether a signed polygon P can be transformed to one that has rotational or mirror symmetry with P, using transpositions, takes Θ(n log n) time. We prove that the problem of deciding whether transpositions can modify a polygon to fit inside a rectangle is weakly NP-complete. Finally we give an O(n log n) time algorithm to compute the maximum endpoint distance for an oriented chain.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Computational Mathematics,Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3