SEMI-BALANCED PARTITIONS OF TWO SETS OF POINTS AND EMBEDDINGS OF ROOTED FORESTS

Author:

KANEKO ATSUSHI1,KANO MIKIO2

Affiliation:

1. Saitama, Japan

2. Department of Computer and Information Sciences, Ibaraki University, Hitachi, Ibaraki, 316-8511, Japan

Abstract

Let m be a positive integer and let R1, R2 and B be three disjoint sets of points in the plane such that no three points of R1 ∪ R2 ∪ B lie on the same line and |B| = (m-1)|R1|+m|R2|. Put g = |R1∪R2|. Then there exists a subdivision X1∪X2∪⋯∪Xg of the plane into g disjoint convex polygons such that (i) |Xi ∩ (R1 ∪ R2)| = 1 for all 1 ≤ i ≤ g; and (ii) |Xi∩B| = m-1 if |Xi∩R1| = 1, and |Xi∩B| = m if |Xi∩R2| = 1. This partition is called a semi-balanced partition, and our proof gives an O(n4) time algorithm for finding the above semi-balanced partition, where n = |R1| + |R2| + |B|. We next apply the above result to the following theorem: Let T1,…,Tg be g disjoint rooted trees such that |Ti| ∈ {m,m+1} and vi is the root of Ti for all 1 ≤ i ≤ g. Let P be a set of |T1|+⋯+|Tg| points in the plane in general position that contains g specified points p1,…,pg. Then the rooted forest T1 ∪ ⋯ ∪ Tg can be straight-line embedded onto P so that each vi corresponds to pi for every 1 ≤ i ≤ g.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Computational Mathematics,Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3