FINDING k FARTHEST PAIRS AND k CLOSEST/FARTHEST BICHROMATIC PAIRS FOR POINTS IN THE PLANE

Author:

KATOH NAOKI1,IWANO KAZUO2

Affiliation:

1. Department of Management Science, Kobe University of Commerce 8–2–1 Gakuen-Nishimachi, Nishi-ku, Kobe 651–21, Japan

2. Tokyo Research Laboratory, IBM Japan 1623–14 Shimotsuruma, Yamato, Kanagawa 242, Japan

Abstract

We study the problem of enumerating k farthest pairs for n points in the plane and the problem of enumerating k closest/farthest bichromatic pairs of n red and n blue points in the plane. We propose a new technique for geometric enumeration problems which iteratively reduces the search space by a half and provides efficient algorithms. As applications of this technique, we develop algorithms, using higher order Voronoi diagrams, for the above problems, which run in O(min{n2, n log n+k4/3log n/log1/3 k}) time and O(n+k4/3/log1/3 k+k log n) space for general Lp metric with p≠2, and O(min{n2, n log n+k4/3}) time and O(n+k4/3+k log n) space for L2 metric. For the problem of enumerating k closest/farthest bichromatic pairs, we shall also discuss the case where we have different numbers of red and blue points. To the authors’ knowledge, no nontrivial algorithms have been known for these problems and our algorithms are faster than trivial ones when k=o(n3/2).

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Computational Mathematics,Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Group nearest-neighbor queries in the L1 plane;Theoretical Computer Science;2015-08

2. Group Nearest Neighbor Queries in the L 1 Plane;Lecture Notes in Computer Science;2013

3. ON ENUMERATING AND SELECTING DISTANCES;International Journal of Computational Geometry & Applications;2001-06

4. Random Sampling, Halfspace Range Reporting, and Construction of \lowercase$(\le k)$-Levels in Three Dimensions;SIAM Journal on Computing;2000-01

5. Closest-Point Problems in Computational Geometry;Handbook of Computational Geometry;2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3