Faster DBSCAN and HDBSCAN in Low-Dimensional Euclidean Spaces

Author:

de Berg Mark1,Gunawan Ade1,Roeloffzen Marcel1ORCID

Affiliation:

1. Department of Computing Science, TU Eindhoven, P. O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract

We present a new algorithm for the widely used density-based clustering method dbscan. For a set of [Formula: see text] points in [Formula: see text] our algorithm computes the dbscan-clustering in [Formula: see text] time, irrespective of the scale parameter [Formula: see text] (and assuming the second parameter MinPts is set to a fixed constant, as is the case in practice). Experiments show that the new algorithm is not only fast in theory, but that a slightly simplified version is competitive in practice and much less sensitive to the choice of [Formula: see text] than the original dbscan algorithm. We also present an [Formula: see text] randomized algorithm for hdbscan in the plane — hdbscan is a hierarchical version of dbscan introduced recently — and we show how to compute an approximate version of hdbscan in near-linear time in any fixed dimension.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Computational Mathematics,Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards Metric DBSCAN: Exact, Approximate, and Streaming Algorithms;Proceedings of the ACM on Management of Data;2024-05-29

2. CORE-SG: Efficient Computation of Multiple MSTs for Density-Based Methods;2022 IEEE 38th International Conference on Data Engineering (ICDE);2022-05

3. An improved density-based approach to risk assessment on railway investment;Data Technologies and Applications;2021-11-01

4. Fast Parallel Algorithms for Euclidean Minimum Spanning Tree and Hierarchical Spatial Clustering;Proceedings of the 2021 International Conference on Management of Data;2021-06-09

5. Self-supervised Detection and Pose Estimation of Logistical Objects in 3D Sensor Data;2020 25th International Conference on Pattern Recognition (ICPR);2021-01-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3