A Bottleneck Matching Problem with Edge-Crossing Constraints

Author:

Carlsson John Gunnar1,Armbruster Benjamin2,Rahul Saladi3,Bellam Haritha3

Affiliation:

1. Epstein Department of Industrial and Systems Engineering, University of Southern California, 3715 McClintock Ave, Los Angeles, California 90089-0193, USA

2. Department of Industrial Engineering and Management Sciences, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA

3. Department of Computer Science and Engineering, University of Minnesota, 200 Union Street Southeast, Minneapolis, Minnesota 55455, USA

Abstract

Motivated by a crane assignment problem, we consider a Euclidean bipartite matching problem with edge-crossing constraints. Specifically, given [Formula: see text] red points and [Formula: see text] blue points in the plane, we want to construct a perfect matching between red and blue points that minimizes the length of the longest edge, while imposing a constraint that no two edges may cross each other. We show that the problem cannot be approximately solved within a factor less than 1:277 in polynomial time unless [Formula: see text]. We give simple dynamic programming algorithms that solve our problem in two special cases, namely (1) the case where the red and blue points form the vertices of a convex polygon and (2) the case where the red points are collinear and the blue points lie to one side of the line through the red points.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Computational Mathematics,Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. New variants of perfect non-crossing matchings;Discrete Applied Mathematics;2024-01

2. Parameterized analysis and crossing minimization problems;Computer Science Review;2022-08

3. Structural properties of bichromatic non-crossing matchings;Applied Mathematics and Computation;2022-02

4. New Variants of Perfect Non-crossing Matchings;Algorithms and Discrete Applied Mathematics;2021

5. Maximum weighted matching with few edge crossings for 2-layered bipartite graph;Discrete Applied Mathematics;2020-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3