An ADMM Approach of a Nonconvex and Nonsmooth Optimization Model for Low-Light or Inhomogeneous Image Segmentation

Author:

Xing Zheyuan1,Wu Tingting2,Yue Junhong3

Affiliation:

1. College of Mathematics, Taiyuan University of Technology, Taiyuan 030024, P. R. China

2. School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China

3. College of Date Science, Taiyuan University of Technology, Taiyuan 030024, P. R. China

Abstract

In this paper, we propose a novel nonconvex and nonsmooth optimization model for low-light or inhomogeneous image segmentation which is a hybrid of Mumford–Shah energy functional and Retinex theory. The given image is decomposed into the reflectance component and the illumination component by solving Retinex-based Mumford–Shah model with [Formula: see text] regularizer. Indeed, the existence of the [Formula: see text] regularizer means the nonsmooth term in the model is nonconvex. Thus, it is difficult to solve the proposed model directly. An alternating direction method of multipliers (ADMM) algorithm is developed to solve the proposed nonconvex and nonsmooth model. We apply a novel splitting technique in our algorithm to ensure that all subproblems admit closed-form solutions. Theoretically, we prove that the sequence generated by our proposed algorithm converges to a stationary point under mild conditions. Next, once the reflectance is obtained, the [Formula: see text]-means clustering method is utilized to complete the segmentation. We compare the proposed Retinex-based method with other state-of-the-art segmentation methods under special lighting conditions. Experimental results show that the proposed method has better performance for both gray-scale images and color images efficiently in terms of the quantitative and qualitative results.

Funder

Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Management Science and Operations Research,Management Science and Operations Research

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3