EVALUATION OF MUTUAL INFORMATION ESTIMATORS FOR TIME SERIES

Author:

PAPANA ANGELIKI1,KUGIUMTZIS DIMITRIS1

Affiliation:

1. Department of Mathematical, Physical and Computational Sciences, Faculty of Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

Abstract

We study some of the most commonly used mutual information estimators, based on histograms of fixed or adaptive bin size, k-nearest neighbors and kernels and focus on optimal selection of their free parameters. We examine the consistency of the estimators (convergence to a stable value with the increase of time series length) and the degree of deviation among the estimators. The optimization of parameters is assessed by quantifying the deviation of the estimated mutual information from its true or asymptotic value as a function of the free parameter. Moreover, some commonly used criteria for parameter selection are evaluated for each estimator. The comparative study is based on Monte Carlo simulations on time series from several linear and nonlinear systems of different lengths and noise levels. The results show that the k-nearest neighbor is the most stable and less affected by the method-specific parameter. A data adaptive criterion for optimal binning is suggested for linear systems but it is found to be rather conservative for nonlinear systems. It turns out that the binning and kernel estimators give the least deviation in identifying the lag of the first minimum of mutual information from nonlinear systems, and are stable in the presence of noise.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3