Dynamic Environment Coupling Induced Synchronized States in Coupled Time-Delayed Electronic Circuits

Author:

Suresh R.12,Srinivasan K.1,Senthilkumar D. V.32,Murali K.4,Lakshmanan M.1,Kurths J.356

Affiliation:

1. Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirapalli 620 024, India

2. Centre for Nonlinear Science & Engineering, School of Electrical and Electronics Engineering, SASTRA University, Thanjavur 613402, India

3. Institute of Physics, Humboldt University, Berlin D-12489, Germany

4. Department of Physics, Anna University, Chennai, India

5. Potsdam Institute for Climate Impact Research, Telegraphenberg, Potsdam D-14473, Germany

6. Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen AB24 3FX, UK

Abstract

We experimentally demonstrate the effect of dynamic environment coupling in a system of coupled piecewise linear time-delay electronic circuits with mutual and subsystem coupling configurations. Time-delay systems are essentially infinite-dimensional systems with complex phase-space properties. Dynamic environmental coupling with mutual coupling configuration has been recently theoretically shown to induce complete (CS) and inverse synchronizations (IS) [Resmi et al., 2010] in low-dimensional dynamical systems described by ordinary differential equations (ODEs), for which no experimental confirmation exists. In this paper, we investigate the effect of dynamic environment for the first time in mutual as well as subsystem coupling configurations in coupled time-delay differential equations theoretically and experimentally. Depending upon the coupling strength and the nature of feedback, we observe a transition from asynchronization to CS via phase synchronization and from asynchronization to IS via inverse-phase synchronization in both coupling configurations. The results are corroborated by snapshots of the time evolution, phase projection plots and localized sets as observed from the oscilloscope. Further, the synchronization is also confirmed numerically from the largest Lyapunov exponents, correlation of probability of recurrence and correlation coefficient of the coupled time-delay system. We also present a linear stability analysis and obtain conditions for different synchronized states.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3