SIMPLE VECTOR FIELDS WITH COMPLEX BEHAVIOR

Author:

AGUIAR MANUELA A. D.12,CASTRO SOFIA B. S. D.12,LABOURIAU ISABEL S.1

Affiliation:

1. Centro de Matemática da Universidade do Porto (CMUP is supported by Fundação para a Ciência e a Tecnologia through Programa Operacional Ciência, Tecnologia e Inovação (POCTI) and Programa Operacional Sociedade da Informação (POSI) of Quadro Comunitário de Apoio III (2000-2006) with European union fundings (FEDER) and national fundings.), Rua do Campo Alegre, 687, 4169-007 Porto, Portugal

2. Faculdade de Economia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-464 Porto, Portugal

Abstract

We construct examples of vector fields on a three-sphere, amenable to analytic proof of properties that guarantee the existence of complex behavior. The examples are restrictions of symmetric polynomial vector fields in R4 and possess heteroclinic networks producing switching and nearby suspended horseshoes. The heteroclinic networks in our examples are persistent under symmetry preserving perturbations. We prove that some of the connections in the networks are the transverse intersection of invariant manifolds. The remaining connections are symmetry-induced. The networks lie in an invariant three-sphere and may involve connections exclusively between equilibria or between equilibria and periodic trajectories. The same construction technique may be applied to obtain other examples with similar features.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Finite switching near heteroclinic networks;Nonlinearity;2023-10-30

2. Periodic Forcing of a Heteroclinic Network;Journal of Dynamics and Differential Equations;2021-08-03

3. Torus-Breakdown Near a Heteroclinic Attractor: A Case Study;International Journal of Bifurcation and Chaos;2021-08

4. Bifurcations from an attracting heteroclinic cycle under periodic forcing;Journal of Differential Equations;2020-08

5. Experimentally Accessible Orbits Near a Bykov Cycle;International Journal of Bifurcation and Chaos;2020-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3