HYPERBOLIC PLYKIN ATTRACTOR CAN EXIST IN NEURON MODELS

Author:

BELYKH VLADIMIR1,BELYKH IGOR2,MOSEKILDE ERIK3

Affiliation:

1. Mathematics Department, Volga State Academy, 5, Nesterov st., Nizhny Novgorod 603 600, Russia

2. Laboratory of Nonlinear Systems, Swiss Federal Institute of Technology Lausanne (EPFL), EPFL-IC-ISC-LANOS, Station 14, 1015 Lausanne, Switzerland

3. Department of Physics, The Technical University of Denmark, 2800 Kongens Lyngby, Denmark

Abstract

Strange hyperbolic attractors are hard to find in real physical systems. This paper provides the first example of a realistic system, a canonical three-dimensional (3D) model of bursting neurons, that is likely to have a strange hyperbolic attractor. Using a geometrical approach to the study of the neuron model, we derive a flow-defined Poincaré map giving an accurate account of the system's dynamics. In a parameter region where the neuron system undergoes bifurcations causing transitions between tonic spiking and bursting, this two-dimensional map becomes a map of a disk with several periodic holes. A particular case is the map of a disk with three holes, matching the Plykin example of a planar hyperbolic attractor. The corresponding attractor of the 3D neuron model appears to be hyperbolic (this property is not verified in the present paper) and arises as a result of a two-loop (secondary) homoclinic bifurcation of a saddle. This type of bifurcation, and the complex behavior it can produce, have not been previously examined.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Reference27 articles.

1. Shunted-Josephson-junction model. II. The nonautonomous case

2. Homoclinic bifurcations leading to the emergence of bursting oscillations in cell models

3. M. Golubitsky, K. Josic and T. Kaper, Festschrift Dedicated to Floris Takens, Global Analysis of Dynamical Systems (2001) pp. 277–308.

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3