MODEL REDUCTION FOR FLUIDS, USING BALANCED PROPER ORTHOGONAL DECOMPOSITION

Author:

ROWLEY C. W.1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA

Abstract

Many of the tools of dynamical systems and control theory have gone largely unused for fluids, because the governing equations are so dynamically complex, both high-dimensional and nonlinear. Model reduction involves finding low-dimensional models that approximate the full high-dimensional dynamics. This paper compares three different methods of model reduction: proper orthogonal decomposition (POD), balanced truncation, and a method called balanced POD. Balanced truncation produces better reduced-order models than POD, but is not computationally tractable for very large systems. Balanced POD is a tractable method for computing approximate balanced truncations, that has computational cost similar to that of POD. The method presented here is a variation of existing methods using empirical Gramians, and the main contributions of the present paper are a version of the method of snapshots that allows one to compute balancing transformations directly, without separate reduction of the Gramians; and an output projection method, which allows tractable computation even when the number of outputs is large. The output projection method requires minimal additional computation, and has a priori error bounds that can guide the choice of rank of the projection. Connections between POD and balanced truncation are also illuminated: in particular, balanced truncation may be viewed as POD of a particular dataset, using the observability Gramian as an inner product. The three methods are illustrated on a numerical example, the linearized flow in a plane channel.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

Cited by 655 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3