Affiliation:
1. Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
Abstract
Many of the tools of dynamical systems and control theory have gone largely unused for fluids, because the governing equations are so dynamically complex, both high-dimensional and nonlinear. Model reduction involves finding low-dimensional models that approximate the full high-dimensional dynamics. This paper compares three different methods of model reduction: proper orthogonal decomposition (POD), balanced truncation, and a method called balanced POD. Balanced truncation produces better reduced-order models than POD, but is not computationally tractable for very large systems. Balanced POD is a tractable method for computing approximate balanced truncations, that has computational cost similar to that of POD. The method presented here is a variation of existing methods using empirical Gramians, and the main contributions of the present paper are a version of the method of snapshots that allows one to compute balancing transformations directly, without separate reduction of the Gramians; and an output projection method, which allows tractable computation even when the number of outputs is large. The output projection method requires minimal additional computation, and has a priori error bounds that can guide the choice of rank of the projection. Connections between POD and balanced truncation are also illuminated: in particular, balanced truncation may be viewed as POD of a particular dataset, using the observability Gramian as an inner product. The three methods are illustrated on a numerical example, the linearized flow in a plane channel.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)
Cited by
655 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献