A Neurobiological Theory of Meaning in Perception Part I: Information and Meaning in Nonconvergent and Nonlocal Brain Dynamics

Author:

Freeman Walter J.1

Affiliation:

1. Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA

Abstract

The aim of this tutorial is to document a novel approach to brain function, in which the key to understanding is the capacity of brains for self-organization. The property that distinguishes animals from plants is the capacity for directed movement through the environment, which requires an organ capable of organizing information about the environment and predicting the consequences of self-initiated actions. The operations of predicting, planning acting, detecting, and learning comprise the process of intentionality by which brains construct meaning. The currency of brains is primarily meaning and only secondarily information. The information processing metaphor has dominated neurocognitive research for half a century. Brains certainly process information for input and output. They pre-process sensory stimuli before constructing meaning, and they post-process cognitive read-out to control appropriate action and express meaning. Neurobiologists have thoroughly documented sensory information processing bottom-up, and neuropsychologists have analyzed the later stages of cognition top-down, as they are expressed in behavior. However, a grasp of the intervening process of perception, in which meaning forms, requires detailed analysis and modeling of neural activity that is observed in brains during meaningful behavior of humans and other animals. Unlike computers, brains function hierarchically. Sensory and motor information is inferred from pulses of microscopic axons. Meaning is inferred from local mean fields of dendrites in mesoscopic and macroscopic populations. This tutorial is aimed to introduce engineers to an experimental basis for a theory of meaning, in terms of the nonlinear dynamics of the mass actions of large neural populations that construct meaning. The focus is on the higher frequency ranges of cortical oscillations. Part I introduces background on information, meaning and oscillatory activity (EEG). Part II details the properties of wave packets. Part III describes the covariance structure of the oscillations. Part IV addresses the amplitude modulations, and Part V deals with the phase modulations. The significance of a theory of meaning lies in applications using population neurodynamics, to open new approaches for treatment of clinical brain disorders, and to devise new machines with capacities for autonomy and intelligence that might approach those of simpler free-living animals.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gamma Rhythm, Neural Population Models of the;Encyclopedia of Computational Neuroscience;2022

2. The future of neuromodulation: smart neuromodulation;Expert Review of Medical Devices;2021-04-03

3. Overview of RFID System Anti-Collision Technology;Physical Anti-Collision in RFID Systems;2021

4. Increased Phase Cone Turnover in 80–250 Hz Bands Occurs in the Epileptogenic Zone During Interictal Periods;Frontiers in Human Neuroscience;2020-12-23

5. Neuro-occupation: A self-organizing approach to conflate the brain, context, and occupation;Canadian Journal of Occupational Therapy;2019-05-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3