Affiliation:
1. School of Information Science and Engineering, Changzhou University, Changzhou 213164, P. R. China
Abstract
Hyperbolic tangent function, a bounded monotone differentiable function, is usually taken as a neuron activation function, whose activation gradient, i.e. gain scaling parameter, can reflect the response speed in the neuronal electrical activities. However, the previously published literatures have not yet paid attention to the dynamical effects of the neuron activation gradient on Hopfield neural network (HNN). Taking the neuron activation gradient as an adjustable control parameter, dynamical behaviors with the variation of the control parameter are investigated through stability analyses of the equilibrium states, numerical analyses of the mathematical model, and experimental measurements on a hardware level. The results demonstrate that complex dynamical behaviors associated with the neuron activation gradient emerge in the HNN model, including coexisting limit cycle oscillations, coexisting chaotic spiral attractors, chaotic double scrolls, forward and reverse period-doubling cascades, and crisis scenarios, which are effectively confirmed by neuron activation gradient-dependent local attraction basins and parameter-space plots as well. Additionally, the experimentally measured results have nice consistency to numerical simulations.
Funder
National Natural Science Foundation of China
National Natural Science Foundation of China (CN)
Natural Science Foundations of Jiangsu Province, China
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)
Cited by
70 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献