Affiliation:
1. Department of Mathematics, Texas A&M University, College Station, TX 77843, USA
2. Department of Mathematics, Zhongshan University, Guangzhou, Guangdong 510275, P. R. China
Abstract
Interval maps reveal precious information about the chaotic behavior of general nonlinear systems. If an interval map f:I→I is chaotic, then its iterates fnwill display heightened oscillatory behavior or profiles as n→∞. This manifestation is quite intuitive and is, here in this paper, studied analytically in terms of the total variations of fnon subintervals. There are four distinctive cases of the growth of total variations of fnas n→∞:(i) the total variations of fnon I remain bounded;(ii) they grow unbounded, but not exponentially with respect to n;(iii) they grow with an exponential rate with respect to n;(iv) they grow unbounded on every subinterval of I.We study in detail these four cases in relations to the well-known notions such as sensitive dependence on initial data, topological entropy, homoclinic orbits, nonwandering sets, etc. This paper is divided into three parts. There are eight main theorems, which show that when the oscillatory profiles of the graphs of fnare more extreme, the more complex is the behavior of the system.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献