An ENOB Evaluation Method for an Acquisition Channel

Author:

Liu Xin1,Liu Yan2,Dong Zengshou1ORCID

Affiliation:

1. College of Electronics and Information Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, P. R. China

2. Qingdao Hismile College, Qingdao 266100, P. R. China

Abstract

Three-parameter and four-parameter sine-wave fitting algorithms are powerful tools for estimating the parameters of the excited single-tone sine-wave for ADC. In the dynamic performance testing processes of instruments, the angle frequency, amplitude, phase and dc component of the input sine-wave are all unknown, so the fitting procedure is nonlinear. This paper proposes and analyzes a test method based on iteration Interpolated Discrete Fourier Transform (IpDFT) and sine-wave fitting method for evaluating the effective number of bit (ENOB) of the acquisition channel. Mathematical expressions of the Least-square fitting residual error and the proposed ENOB evaluation based on iteration IpDFT method are derived. These expressions are then particularized for acquisition circuit output noise composed of single-tone and additive white noise. Simulation results show that the DFT-based golden section searching algorithm (DGSSA) is an effective algorithm under coherent and non-coherent sampling conditions. The accuracy of the derived expressions and estimated parameters are verified through both the computer simulations and experimental results.

Funder

National Natural Science Foundation of China

Doctoral research foundation project of Taiyuan University of Science and Technology

Jincheng Science and Technology Key Projects

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3