A NONLOCAL STRUCTURAL DERIVATIVE MODEL BASED ON THE CAPUTO FRACTIONAL DERIVATIVE FOR SUPERFAST DIFFUSION IN HETEROGENEOUS MEDIA

Author:

XU WEI1,LIANG YINGJIE1ORCID

Affiliation:

1. College of Mechanics and Materials, Hohai University, Nanjing, Jiangsu 211100, P. R. China

Abstract

Superfast diffusion exists in various complex anisotropic systems. Its mean square displacement is an exponential function of time proved by several theoretical and experimental investigations. Previous studies have studied the superfast diffusion based on the time-space scaling local structural derivatives without considering the memory of dynamic behavior. This paper proposes a nonlocal time structural derivative model based on the Caputo fractional derivative to describe superfast diffusion in which the structural function is a power law function of time. The obtained concentration of the diffusive particles, i.e. the solution of the structural derivative model is a double-sided exponential distribution. The derived mean square displacement is a Mittag–Leffler function of time, which generalizes the exponential case. To verify the feasibility of the model, the charge and energy transfer at nanoscale interfaces in solar cells and the dynamics of the dripplons between two graphene sheets are employed. Compared with the existing models, the fitting results indicate that the proposed model is more accurate with higher credibility. The properties of the nonlocal structural derivative model with different structural functions are also discussed.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Geometry and Topology,Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3