NAVIGALA: AN ORIGINAL SYMBOL CLASSIFIER BASED ON NAVIGATION THROUGH A GALOIS LATTICE

Author:

VISANI M.1,BERTET K.1,OGIER J.-M.1

Affiliation:

1. Department of Computer Science — Laboratory L3I — University of La Rochelle, Ple Sciences et Technologie, Avenue Michel Crpeau, 17042 La Rochelle Cedex 1, France

Abstract

This paper deals with a supervised classification method, using Galois Lattices based on a navigation-based strategy. Coming from the field of data mining techniques, most literature on the subject using Galois lattices relies on selection-based strategies, which consists of selecting/choosing the concepts which encode the most relevant information from the huge amount of available data. Generally, the classification step is then processed by a classical classifier such as the k-nearest neighbors rule or the Bayesian classifier. Opposed to these selection-based strategies are navigation-based approaches which perform the classification stage by navigating through the complete lattice (similar to the navigation in a classification tree), without applying any selection operation. Our approach, named Navigala, proposes an original navigation-based approach for supervised classification, applied in the context of noisy symbol recognition. Based on a state of the art dealing with Galois Lattices classification based methods, including a comparison between possible selection and navigation strategies, this paper proposes a description of NAVIGALA and its implementation in the context of symbol recognition. Some objective quantitative and qualitative evaluations of the approach are proposed, in order to highlight the relevance of the method.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient Closure Operators for FCA-Based Classification;International Journal of Artificial Intelligence and Machine Learning;2020-07

2. Exploratory knowledge discovery over Web of Data;Discrete Applied Mathematics;2018-11

3. Using congruence relations to extract knowledge from concept lattices;Discrete Applied Mathematics;2018-11

4. Lattices, closures systems and implication bases: A survey of structural aspects and algorithms;Theoretical Computer Science;2018-09

5. Structural Approaches;Document Image Analysis;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3