Affiliation:
1. Department of Computer Science — Laboratory L3I — University of La Rochelle, Ple Sciences et Technologie, Avenue Michel Crpeau, 17042 La Rochelle Cedex 1, France
Abstract
This paper deals with a supervised classification method, using Galois Lattices based on a navigation-based strategy. Coming from the field of data mining techniques, most literature on the subject using Galois lattices relies on selection-based strategies, which consists of selecting/choosing the concepts which encode the most relevant information from the huge amount of available data. Generally, the classification step is then processed by a classical classifier such as the k-nearest neighbors rule or the Bayesian classifier. Opposed to these selection-based strategies are navigation-based approaches which perform the classification stage by navigating through the complete lattice (similar to the navigation in a classification tree), without applying any selection operation. Our approach, named Navigala, proposes an original navigation-based approach for supervised classification, applied in the context of noisy symbol recognition. Based on a state of the art dealing with Galois Lattices classification based methods, including a comparison between possible selection and navigation strategies, this paper proposes a description of NAVIGALA and its implementation in the context of symbol recognition. Some objective quantitative and qualitative evaluations of the approach are proposed, in order to highlight the relevance of the method.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献