Medical Image Enhancement Method Based on the Fractional Order Derivative and the Directional Derivative

Author:

Guan Jinlan1,Ou Jiequan2,Lai Zhihui3,Lai Yuting1

Affiliation:

1. Guangdong AIB college, Guangzhou 510507, P. R. China

2. Guangzhou Light Industry Vocational School, Guangzhou 510650, P. R. China

3. College of Computer Science and Software Engineering, Shenzhen University Shenzhen 518060, P. R. China

Abstract

In recent years, the fractional order derivative has been introduced for image enhancement. It was proved that the medical image enhancement method based on the fractional order derivative has better effect than the method based on the integral order calculus. However, a priori information such as texture surrounding a pixel is normally ignored by the traditional fractional differential operators with the same value in the eight directions. To address the above problem, this paper presents a new medical image enhancement method by taking the merits of fractional differential and directional derivative. The proposed method considers the surrounding information (such as the image edge, clarity and texture information) and structural features of different pixels, as well as the directional derivative of each pixel in constructing the masks. By proposing this method, it can not only improve the high frequency information, but also improve the low frequency information of the image. Ultimately, it enhances the texture information of the image. Extensive experiments on four kinds of medical image demonstrate that the proposed algorithm is in favor of preserving more texture details and superior to the existing fractional differential algorithms on medical image enhancement.

Funder

Natural Science Foundation of Jilin Province (CN)

Hong Kong Polytechnic University

Guangdong AIB college's Excellent young scholar project

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3